近期,固体所李新化老师课题组与戴建明老师课题组合作,在钙钛矿太阳能电池领域研究取得新进展,开发了一种无有机电子传输层的新型高效钙钛矿太阳能电池,相关研究发表在先进材料(Advanced Materials)杂志子刊Solar RRL (DOI:10.1002/solr.201800167)上。
作为能源形式不可或缺的一部分,光伏能源的研究进展备受关注。其中,钙钛矿结构太阳能电池由于具有优越的光吸收特性、带隙可调、载流子寿命长、迁移率高、制备工艺简单、成本低廉等优点,具有广泛的应用前景,成为光伏领域的研究热点。
钙钛矿太阳能电池分为正式(n-i-p)和反式(p-i-n)两种结构,而反式(p-i-n)平面结构钙钛矿太阳能电池(阳极/空穴传输层/钙钛矿/电子传输层/阴极金属)凭借制备工艺简单、可低温成膜、无明显迟滞效应等优点受到越来越多的关注。但是仍然面临诸多问题:一是光电转换效率还稍显不足;二是作为钙钛矿(如:甲胺铅碘(MAPbI3))太阳能电池的核心部件有机电子传输层(如:C60、PCBM等富勒烯及其衍生物)的热稳定性差,且无法阻挡金属电极在MAPbI3中的扩散;三是有机电子传输层成本昂贵等。
为了解决这些问题,固体所研究人员利用金属钛(Ti)取代有机电子传输层,设计出如图1所示的钙钛矿太阳能电池(ITO(阳极透明导电玻璃)/PTAA(有机空穴传输层)/MAPbI3/Ti/Cathode (阴极金属))结构。研究表明,利用Ti的高粘滞性制备的Ti (10nm) 层能够完整共型的覆盖在钙钛矿表面,有利于降低电极接触电阻,并且能够有效抑制阴极金属在钙钛矿器件中的扩散,从而有助于保护器件结构的完整性和稳定性;另一方面,在Ti与MAPbI3的界面处,Ti与甲胺离子(MA+)形成Ti-N键,能够抑制MAPbI3因表层MA+的挥发而引起的分解,进一步提高了器件的稳定性(图2)。研究结果显示利用Ti作为电子传输层制备的钙钛矿电池的光电转换效率已经达到18.1% (图3),这是目前金属材料与钙钛矿层直接接触器件所达到的最高效率,也是足以媲美传统PCBM作为有机电子传输层的钙钛矿太阳能电池的光电转换效率。而且相比于有机电子传输层的制备条件,Ti层的制备和成本更为简单与低廉。
此研究工作为构筑高效的钙钛矿太阳能电池提供了崭新思路,具有非常重要的指导意义。
该工作得到国家自然科学基金,国家自然科学基金联合基金的资助。
文章链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.201800167
图1. 反式ITO/PTAA/MAPbI3/Ti/Cathode结构的钙钛矿器件示意图
图2. MAPbI3/Ti中界面Ti-N成键示意图
图3. 阴极金属不同的钙钛矿器件电流-电压图