以热电材料为核心部件的热电器件可以将热能和电能进行直接转换,无需运动部件,不产生噪音污染,且不排放任何有毒或温室气体。PbTe被认为是非常有前景的中温热电材料之一。然而,n 型 PbTe 材料热电优值相比于p 型 PbTe 材料较低。其主要原因是 PbTe 导带中的轻带(L)和重带(∑)之间存在较大的能量偏移,导致 n 型PbTe 中很难实现能带简并,使得其功率因子较低。因此,需开展更为深入和系统的研究以有效和大幅提升n型PbTe的热电性能。
鉴于此,固体所科研人员主要利用施主元素掺杂优化n 型 PbTe中载流子浓度,同时结合能带工程/能量过滤效应提高其电学性能;在此基础上利用原位反应构建半共格纳米相,引入多尺度缺陷散射声子(位错、界面、纳米第二相等),以达到提高功率因子、降低热导率,进而提高ZT的目的。结果显示,复合样品Pb0.97Sb0.03Te + 1.5 wt% Cu12Sb4S13具有优异的热电性能,ZT达到1.58 (773K),相比Pb0.97Sb0.03Te提升了约75%。该工作表明Cu12Sb4S13纳米颗粒的加入是提高Pb0.97Sb0.03Te热电性能的有效途径,对于n型碲化铅热电性能的调控研究具有重要意义。
上述工作得到国家自然科学基金、安徽省自然科学基金、合肥研究院院长基金的支持。
文章链接:https://doi.org/10.1039/D2NR04419F
图1. 复合物样品的高分辨图像以及选定区域电子衍射(SAED)。
图2. (a) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品电导率随温度的变化关系;(b) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品Seebeck系数随温度的变化关系;(c) 室温下所有复合材料的塞贝克系数随载流子浓度的变化情况;(d) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品功率因子随温度的变化关系。
图3. (a) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品总热导率随温度的变化关系;(b) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品电子热导率随温度的变化关系;(c) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品晶格热导率随温度的变化关系;(d) Pb0.97Sb0.03Te + y wt% Cu12Sb4S13样品热电优值随温度的变化关系。